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STATISTICAL INFERENCE 

 

Main point: How to use the sample to conclude about unknown aspects of the 

population 

 

Our first topic will be how to summarize the information included in a data collection 

(what is usually known as descriptive statistics or data exploratory analysis) 
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Mains points to take into consideration: 

 Location  

 Variability 

 Measures of the possible relationship among the variables in our data collection 

 

Sometimes we have a large number of variables in our data collection and we need 

to summarize the information underlying a few main points. One of the possible 

techniques is Principal Components Analysis (PCA). 

Some points to look at before initializing  any analysis: 

 Data Types – Categorical versus Numerical 

 Level of measurement  of each variable – Most of the time in actuarial problem 

we use quantitative variables measured in a ratio scale but … there are 

exceptions 
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Data Types – Categorical versus Numerical 
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How to determine the level of measurement (Doane and Seward)? 
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Location and variability measures  (counterpart of population measures) 
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Why to divide by 1n  instead of n  (to be discussed later)? 
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Association measures  (counterpart of population measures) 

 Covariance 1
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 Pearson’s correlation coefficient   
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 Spearman´s rank correlation coefficient, Sr   

Replace each value ix  by its rank,  ir x , and do the same to iy , obtaining  ir y . 

Spearman´s rank correlation coefficient is computed as Pearson´s correlation 

between  ir x  and  ir y . 
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Association and causation 

 Association is different from causation 

 Association - A relationship between two, or more, variables 

 Correlation – Similar to association, depending on how correlation is 

computed. Pearson´s correlation → linear association 

 Causation - Changes in one variable causes changes in the other. 
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Association Measures – Example 

Manufacturers of perishable foods often use preservatives to retard spoilage. One 
concern is that too much preservative will change the flavor of the food. Suppose an 
experiment is conducted using samples of a food product with varying amounts of 
preservative added. Both length of time until the food shows signs of spoiling and a 
taste rating are recorded for each sample. The taste rating is the average rating for 
three tasters, each of whom rates each sample on a scale from 1 (good) to 5 (bad). 
Twelve sample measurements are shown in the following table. 

 1 2 3 4 5 6 7 8 9 10 11 12 

Nº Days 30 47 26 94 67 83 36 77 43 109 56 70 

Taste  4.3 3.6 4.5 2.8 3.3 2.7 4.2 3.9 3.6 2.2 3.1 2.9 

Compute Pearson’s and Spearman’s correlation coefficient and comment. 
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Association Measures – Example (solution) 

> #### Correlation coefficients example 

> x=c(30,47,26,94,67,83,36,77,43,109,56,70) 

> y=c(4.3,3.6,4.5,2.8,3.3,2.7,4.2,3.9,3.6,2.2,3.1,2.9) 

>  

> # Pearson's coefficient 

> cor.xy=cor(x,y)    # Pearson's coefficient 

>  

> avg.x=mean(x); sd.x=sd(x) 

> avg.y=mean(y); sd.y=sd(y) 

> cbind(avg.x,avg.y,sd.x,sd.y,cor.xy) 

     avg.x avg.y     sd.x     sd.y     cor.xy 

[1,]  61.5 3.425 26.29034 0.714938 -0.8771227 

> # just to check formula 

> cov.xy=cov(x,y) 

> cov.xy/(sd.x*sd.y) # Pearson's coefficient 

[1] -0.8771227 

>  
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Association Measures – Example (solution) 

> # Spearman's coefficient 

> cor(rank(x),rank(y)) # Spearman's coefficient 

[1] -0.8791607 

> rank(x); rank(y) 

 [1]  2  5  1 11  7 10  3  9  4 12  6  8 

 [1] 11.0  7.5 12.0  3.0  6.0  2.0 10.0  9.0  7.5  1.0  5.0  4.0 

> d=rank(x)-rank(y); n=12; 1-6*sum(d^2)/(n*(n^2-1)) # Approx value 

since we have one tie 

[1] -0.8758741 

> 
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PRINCIPAL COMPONENTE ANALYSIS (PCA) 

 

Motivation: A financial analyst is interested in determining the financial health of 

firms in a given industry. Research studies have identified a number of financial 

ratios (say about 120) that can be used for such a purpose. Obviously, it would be 

extremely taxing to interpret the 120 pieces of information for assessing the 

financial health of firms. However, the analyst’s task would be simplified if these 

120 ratios could be reduced to a few indices (say about 3), which are linear 

combinations of the original 120 ratios.  

Main purpose of PCA: To capture the main patterns explaining the variability in a 

data set using a small number of new variables that are uncorrelated linar 

combinations of the original variables keeping the loss of information under control. 
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PCA – Introduction 

 PCA is one of the multivariate exploratory data analysis techniques. It can 

be used by itself to reduce the dimension of a data set or as an auxiliary 

technique for other approaches. 

 The new variables to be created are: 

 Linear combinations of the original variables 

 The linear combinations are uncorrelated with each other 

 The maximum number of new variables is equal to the number of 

original variables (assuming that there is no perfect correlation 

among the original variables) 

 Let us first consider a very simple example: 2p   variables, 1X  and 2X  

and 12n   observations for each variable (data are presented in Table 1) 
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PCA – A simple example 

Table1 

obs 1 2 3 4 5 6 7 8 9 10 11 12 

1X  16 12 13 11 10 9 8 7 5 3 2 0 

2X  8 10 6 2 8 -1 4 6 -3 -1 -3 0 
 

Compute S , the covariance matrix between 1X  and 2X . 
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 The total variance is then 
2 2

1 2 11 22 23.09091 21.09091 44.18182s s s s        
2

1 23.09091s   (the variance of the first variable) represents 52.26% of this 

total while 
2

2 21.09091s   represents 47.74%. 
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PCA – A simple example (cont) 

 The first step is to replace the original variables, 1X  and 2X , by 2 linear 

combinations of them, 1Y  and 2Y , in such a way that the first one will cover must 

of the varability (most of the total variance). 
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As it is obvious, if we multiply the coefficient ije  by a constant 1k  , 
1

2

Ys  and 
2

2

Ys  

will increase and then we need to introduce a constraint before maximizing. The 

constraint is  
2 2

1 2 1i ie e  . 

 The second step will be to discuss the data reduction: Is it acceptable to use 

less linear combinations (Y variables) than the original number of variables? 

 

Let us, first, discuss the first step. 
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PCA – A simple example (cont) 

The problem: 
1

2
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We need to maximize the Lagrangean function 
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PCA – A simple example (cont) 

Using some matricial notation and defining 
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And then we must solve 1( )S I e 0 knowing that 
1 1 1T e e  ( the same result 

can be obtained from the previous slide). This is a well known problem in linear 

algebra: Finding the eigenvalues and the eigen vectors of matrix S  
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PCA – Eigenvalues and eigenvector of matrix S  

Solve 1( )S I e 0  subject to 
1 1 1T e e  

As we have a homogeneous system of equations the trivial solution 1 e 0  is 

always possible but irrelevant. So, we must guarantee that the determinant of the 

system is 0 , i.e.,   0S I  . 

This equation is a polynomial of order k  (the number of original variables) and 

therefore has k  roots (the eigenvalues of S ), 1 2 0k      , as S  is 

definite positive matrix (assuming that none of the variables is a linear 

combination of the others).  

For each root i  we get the corresponding eigenvector, i
e , normalized using  

1T

i i e e . 
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PCA – Eigenvalues and eigenvector of matrix S  (cont) 

Let us consider the largest eigenvalue, 1 . As it is a solution of the system we 

have 

1 1

1 1

( )
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e 0

e e
 

Pre-multiplying the first equation by 
1

T
e  originates 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) 0T T T T T TS I S I S          e e e 0 e e e e e e e e  

as 
1 1 1T e e .   

We get 1 1 1

T S e e  and if we repeat the process for the second largest eigenvalue 

we get  2 2 2

T S e e  and so on. The variance of the j-th linear combination  is 

equal to the j-th eigenvalue.  
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PCA – A simple example (cont) 

Back to our simple example we define the polynomial as  
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PCA – A simple example (cont) 

For each case (see slide we can choose the positive or the negative root to define 

1ie  as the results are equivalent. Let us choose the negative (to get the solution 

obtained using R) 

 1 138.57582 (87.31% of total variance)     0.722388 0.685324T    e

 2 25.606001 (12.69% of total variance)     0.685324 0.728238T   e  

At this stage we are using  all the information in a different way and we solve step 1.  

Instead of representing (plotting) each observation using the original variables (

1X  and 2X ) we can use the principal components ( 1e  and 2e ). For observation i  

we get 
1 1 111 12

2 2 221 22

0.722388 0.685324

0.685324 0.728238

i i i

i i i

Y X Xe e

Y X Xe e

        
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PCA – A simple example (cont) 

  
 

 1st  panel: observations (a to l), centering effect (dashed lines) and PC (red) 

 2nd panel: centered observations (a to l), and PC (red) with unit and direction. 

The direction of each axis is arbitrary (remember that we can choose the 

negative or the positive root). 

 3rd panel: observations using the new axes system (PC).  
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PCA 

Two more definitions can be useful: 

 Loadings: different definitions appear in the litterature but the most commom – 

also called standardized loading – is the correlation coefficient between each PC 

and each original variable 
ij

ij i

j

w
l

s
  where 

ijl  stand for the loading of the jth 

variable on PC i , ijw  is the weight , 
js  the standard deviation of the j-th variable 

and i  the eigenvalue (variance) associated to the i-th PC.  

 Scores: the coordinates of each observation in terms of the principal 

components (see the right panel on previous slide) 

Data reduction: Is the first PC (or how many PC are) enough to represent the data 

set? The answer depends on: 

 How much variability (% of total variability) is captured by the first PCs. 

 How relevant is the loss of information for the problem under analysis. 

Before addressing this point let’s see how to use R to analyze the first example: 
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PCA – Using  R – A simple example 

> x1=c(16,12,13,11,10,9,8,7,5,3,2,0)  

> x2=c(8,10,6,2,8,-1,4,6,-3,-1,-3,0)  

> x=cbind(x1,x2) 

>  

> ### Using eigenvalues and eigenvectors - centered only 

> x1c=(x1-mean(x1)); x2c=(x2-mean(x2)) 

> Xc=cbind(x1c,x2c) 

> S=(1/(length(x1c)-1))*(t(Xc)%*%Xc); S  # covariance matrix 

         x1c      x2c 

x1c 23.09091 16.45455 

x2c 16.45455 21.09091 

> out=eigen(S); out 

eigen() decomposition 

$`values` 

[1] 38.575813  5.606005 

 

$vectors 

           [,1]       [,2] 

[1,] -0.7282381  0.6853242 

[2,] -0.6853242 -0.7282381 
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PCA – Using  R – A simple example 

> cbind(out$values[1]/sum(out$values),out$values[2]/sum(out$values)) 

          [,1]      [,2] 

[1,] 0.8731151 0.1268849 

>  

> ### Using prcomp function (other sol are available in R) 

> out1=prcomp(x,center=T) 

> out1 # eigenvalues are the squares of st. dev. 

Standard deviations (1, .., p=2): 

[1] 6.210943 2.367700 

 

Rotation (n x k) = (2 x 2): 

          PC1        PC2 

x1 -0.7282381  0.6853242 

x2 -0.6853242 -0.7282381 

> summary(out1) 

Importance of components: 

                          PC1    PC2 

Standard deviation     6.2109 2.3677 

Proportion of Variance 0.8731 0.1269 

Cumulative Proportion  0.8731 1.0000 
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PCA – Using  R – A simple example 

 

> out1$x          # scores 

             PC1        PC2 

 [1,] -9.2525259  1.8414027 

 [2,] -7.7102217 -2.3563703 

 [3,] -5.6971632  1.2419065 

 [4,] -1.4993902  2.7842106 

 [5,] -4.8830971 -2.2705423 

 [6,]  2.0130586  3.5982767 

 [7,] -0.6853242 -0.7282381 

 [8,] -1.3277344 -2.8700386 

 [9,]  6.2966594  2.3134563 

[10,]  6.3824874 -0.5136683 

[11,]  8.4813738  0.2574838 

[12,]  7.8818776 -3.2978790 

> out1$rotation   # weights, eigen vectors 

          PC1        PC2 

x1 -0.7282381  0.6853242 

x2 -0.6853242 -0.7282381 
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PCA – Using  R – A simple example 

> cor(x,out1$x)   # loadings 

          PC1        PC2 

x1 -0.9412618  0.3376776 

x2 -0.9268425 -0.3754503 

 

or, using the formula, ij

ij i

j

w
l

s
  

  

> # using the formula instead of the correlation 

> z.c=rbind(out1$sdev,out1$sdev) 

> sd.c=c(sd(x1),sd(x2)); sd.c=cbind(sd.c,sd.c) 

> l=out1$rotation*z.c/sd.c; l  # loadings 

          PC1        PC2 

x1 -0.9412618  0.3376776 

x2 -0.9268425 -0.3754503 
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PCA – Some issues 

4 issues need to be briefly discussed: 

1. In addition to centering (mean correct) should we scale the variables? 

2. Number of principal components to extract 

3. How to interpret principal components 

4. Use of principal component scores 

 

A new example – Food price index (Sharma) – will help to clarify these issues.  

The average price (cents per pound – 1973) of five (just to keep things simple) 

food items  are known for 23 US cities. Our main objective is to form a price index 

(like the Consumer Price Index) using PCA. 

The data is presented in the R program: 5 food items and 23 cities 

After reading the data set, our next task is to prerform a PCA as we did before 
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PCA - Example 2 – Food price index 

 First step → reading the data set  

> dta=read.csv("E:/Risk Models 2018/food price index.csv",header=T,sep=",") 

> dta     # Check input 

            City Bread Burger Milk Oranges Tomatoes 

1        Atlanta  24.5   94.5 73.9    80.1     41.6 

2      Baltimore  26.5   91.0 67.5    74.6     53.3 

3         Boston  29.7  100.8 61.4   104.0     59.6 

4        Buffalo  22.8   86.6 65.3   118.4     51.2 

5        Chicago  26.7   86.7 62.7   105.9     51.2 

6     Cincinnati  25.3  102.5 63.3    99.3     45.6 

7      Cleveland  22.8   88.8 52.4   110.9     46.8 

8         Dallas  23.3   85.5 62.5   117.9     41.8 

9        Detroit  24.1   93.7 51.5   109.7     52.4 

10      Honolulu  29.3  105.9 80.2   133.2     61.7 

11       Houston  22.3   83.6 67.8   108.6     42.4 

12   Kansas City  26.1   88.9 65.4   100.9     43.2 

13   Los Angeles  26.9   89.3 56.2    82.7     38.4 

14     Milwaukee  20.3   89.6 53.8   111.8     53.9 

15   Minneapolis  24.6   92.2 51.9   106.0     50.7 

16      New York  30.8  110.7 66.0   107.3     62.6 

17  Philadelphia  24.5   92.3 66.7    98.0     61.7 

18    Pittsburgh  26.2   95.4 60.2   117.1     49.3 

19     St. Louis  26.5   92.4 60.8   115.1     46.2 

20     San Diego  25.5   83.7 57.0    92.8     35.4 

21 San Francisco  26.3   87.1 58.3   101.8     41.5 

22       Seattle  22.5   77.7 62.0    91.1     44.9 

23 Washington DC  24.2   93.8 66.0    81.6     46.2 
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PCA - Example 2 – Food price index 

 Second step → 1st PCA  using prcomp function (other solutions are available) 

 

> attach(dta) 

> x=cbind(Bread,Burger,Milk,Oranges,Tomatoes) 

> out1=prcomp(x, center=T) 

> out1 

Standard deviations: 

[1] 14.798604  9.577221  6.136994  4.561857  1.740468 

 

Rotation: 

                PC1        PC2         PC3         PC4         PC5 

Bread    0.02848905  0.1653211 -0.02135748  0.18972574 -0.96716354 

Burger   0.20012240  0.6321849 -0.25420475  0.65862454  0.24877074 

Milk     0.04167230  0.4421503  0.88874949 -0.10765906  0.03606094 

Oranges  0.93885906 -0.3143547  0.12135003  0.06904699 -0.01521357 

Tomatoes 0.27558389  0.5279160 -0.36100184 -0.71684022 -0.03429221 

 > summary(out1) 
Importance of components: 

                           PC1    PC2    PC3     PC4     PC5 

Standard deviation     14.7986 9.5772 6.1370 4.56186 1.74047 

Proportion of Variance  0.5884 0.2464 0.1012 0.05591 0.00814 

Cumulative Proportion   0.5884 0.8348 0.9359 0.99186 1.00000 
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PCA - Scaling or not scaling the variables 

As we can see PC1 is very much affected by the variable Oranges. This is partialy 

due to the fact that the variability associated with this variable is much higher 

than the variability associated with the other variables (see the satndard 

deviations). 

If we do not want that the variability of each variable influences the output we 

can scale the variables (divide by the standard deviation) – we will analyze the 

correlation matrix instead of the covariance matrix. 

The main point to think about before scaling or not scaling the variables is if we 

want to give the same (scale the variables) a priori weight to each variable or 

not.  

To use scaled variables we can scale them before performing PCA or jus just replace 

out1=prcomp(x,center=T) by out1=prcomp(x,center=T,scale=T) 
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PCA - Example 2 – Food price index 

> out2=prcomp(x, center=T,scale=T) 

> out2 

Standard deviations: 

[1] 1.5564279 1.0510352 0.8593489 0.7025748 0.4906784 

 

Rotation: 

               PC1         PC2         PC3         PC4          PC5 

Bread    0.4961487 -0.30861972  0.38639398  0.50930459 -0.499898868 

Burger   0.5757023 -0.04380176  0.26247227 -0.02813712  0.772635014 

Milk     0.3395696 -0.43080905 -0.83463952  0.04910000  0.007882237 

Oranges  0.2249898  0.79677694 -0.29160659  0.47901574 -0.005966796 

Tomatoes 0.5064340  0.28702846  0.01226602 -0.71270629 -0.391201387 

> summary(out2) 

Importance of components: 

                          PC1    PC2    PC3     PC4     PC5 

Standard deviation     1.5564 1.0510 0.8593 0.70257 0.49068 

Proportion of Variance 0.4845 0.2209 0.1477 0.09872 0.04815 

Cumulative Proportion  0.4845 0.7054 0.8531 0.95185 1.00000 

 

As we can see we get a different solution. Now, the weights for PC1 are more balanced. 
For the purpose of the example (CPI) this solution is probably better since we have no 
reason to give Oranges much more weight than for the other items.  
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PCA - Number of PC to extract 

Remember that the idea is to capture the main patterns explaining the variability 

in a data set using a small number of PC. Both topics (“main pattern” and “small 

number”) are linked together and depend on the problem under analysis. 

However there are some criteria that can be used when there is no clear answer 

to this question. 

o Kaiser criterion – keep PC whose eigenvalues are greater than 1 (scaled 

data) or greater than the average of all eigenvalues (non-scaled data). 

Mainly used with scaled data. 

o Scree-plot analysis – Plot the percent of variance accounted for by each PC 

and look for an elbow. Choose the value imidiately before the elbow (used 

with both scaled and non-scaled data) or use the second differences. 

o Parallel analysis – Based on a simulation procedure (simulation will be 

discussed latter) that can be simplified using a table of constants (see 

sharma).  More efficient but less used as it is more difficult to compute. In R 

we can use some packages to get a parallel analysis: paran or psych for 

instance. 
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PCA - Example 2 – Food price index 

 Kaiser criterion: 

o Scaled data: retain the first 2 PC (remember that the eigenvalues are the 

square of the standard deviation of the principal components 

o Non-scaled data: retain the first 2 PC 

> lambda=out1$sdev^2; lambda 

[1] 218.998679  91.723169  37.662690  20.810541   3.029229 

> mean(lambda) 

[1] 74.44486 
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PCA - Example 2 – Food price index 

 Scree plot: left panel for centered data and right panel for scaled (and centered) 

data 

  

For non-scaled dat just replace out2 by out1  
> # scaled 

> lambda=out2$sdev^2 

> plot(lambda,type="b") 

> diff(lambda,lag=1,differences=2) 

[1]  0.951598697  0.121325148 -0.007976802 

Both scree plots are similar and recommend the use of 2 PC 
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PCA - Example 2 – Food price index 

 Parallel analysis – Horn (1965) 

o Using paran 

> require(paran)     # package paran must be installed before  

> paran(x,iterations=100,graph=T) 

Using eigendecomposition of correlation matrix. 

Computing: 10%  20%  30%  40%  50%  60%  70%  80%  90%  100% 

Results of Horn's Parallel Analysis for component retention 

100 iterations, using the mean estimate 

 

--------------------------------------------------  

Component   Adjusted    Unadjusted    Estimated  

            Eigenvalue  Eigenvalue    Bias  

--------------------------------------------------  

1           1.791788    2.422467      0.630679 

--------------------------------------------------  

 

Adjusted eigenvalues > 1 indicate dimensions to retain. 

(1 components retained) 
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PCA - Example 2 – Food price index 
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PCA - How to interpret principal components? 

When possible retained PC can be interpreted using the loadings: The higher the 

loading (in absolute value) the more influence it had in the formation of the PC. 

But the main question is how high should the loading be before we can say that 

a given variable is influential in the formation of he PC. There are no clear 

answers to this question. In some applied work the value 0.5 or 0.6 for scaled 

data is used as a cutoff. 
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PCA - Example 2 – Food price index 

Back to the example, compute the loadings for each retained PC -  assuming 

scaled variables and that 2 PC are retained  

> cor(x,out2$x)    # Loadings 

               PC1         PC2   

Bread    0.7722197 -0.32437017   

Burger   0.8960392 -0.04603719   

Milk     0.5285156 -0.45279546  

Oranges  0.3501804  0.83744058  

Tomatoes 0.7882281  0.30167700   

 

Using 0.5 as the cutoff value, PC1 is the “non-fruits” CPI (stricly speaking 

tomatoe is a fruit but is usually considered as a vegetable) and PC2 is the “fruit” 

CPI we can interpret PC1. 
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PCA - Example 2 – Food price index 

If non-scaled data is used, there interprteation is more puzzling 

> cor(x,out1$x) 

                PC1        PC2 

Bread    0.16817616  0.6315875 

Burger   0.39199944  0.8014061 

Milk     0.08872954  0.6092695 

Oranges  0.97573973 -0.2114328 

Tomatoes 0.53642447  0.6650256 

 

PC1 linked to fruits (and vegetables) and PC2 linked to the remaining items. 
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PCA – Use of principal component scores 

PC scores can be plotted for further interpretting the results (but a clear 

interpretation is not guaranted). 

 

Broadly speaking we can identify 5 groups: 

 High fruit CPI and low non-fruit CPI:  Milwaukee, 

Cleveland, Detroit, Buffalo, Minneapolis,Dallas; 

 Avg fruit CPI and low non-fruit CPI : Houston, 

San Fr, Seattle, San Diego Kansas City; 

 Avg fruit CPI and low non-fruit CPI : LA, Wash, 

Baltimore, Atlanta; 

 Avg fruit CPI and avg non-fruit CPI : Pittsburgh, 

St Louis, Chicago, Philadelphia, Houston, 

Cincinanti; 

 Avg fruit CPI and High non-fruit CPI : New-York, 

Honolulu, 
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